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TL;DR
• we introduce Ancestral GFlowNets (AGFNs) as a new

amortized inference method for sampling from a be-
lief distribution on the space of ancestral graphs,

• we develop the first human-in-the-loop framework for
ancestral causal discovery (CD),

• we design an optimal strategy for elicitation of an
expert’s feedback regarding the nature of a specific
causal relationship among the observed variables,

• we demonstrate that our human-aided CD method
drastically outperforms traditional CD algorithms af-
ter just a few expert interactions.

I. Background: Causal Discovery

Let 𝑿 ∈ ℝ𝑛×𝑑 be a 𝑑-dimensional i.i.d. data set. A causal
discovery (CD) algorithm takes 𝑿 as input and returns a
causal diagram over the variables 𝒱 = {1, …, 𝑑} of 𝑿.

Examples of ancestral graphs.
In the absence of causal sufficiency, ancestral graphs
(AGs) are used to represent both ancestral causal rela-
tionships (directed edges) and associations due to latent
confounding (bidirected edges) among variables.

We take a Bayesian stance and estimate a probability
distribution over the space 𝒢 of AGs on 𝒱. For this, we
introduce a score function 𝑠 : ℝ𝑛×𝑑 × 𝒢 → ℝ and define
the posterior distribution over the space of AGs as

𝜋(𝐺 | 𝑿) ∝ exp(𝑠(𝑿, 𝐺)). (1)

II. Background: GFlowNets

GFlowNets are amortized algorithms for sampling from
unnormalized distributions on a compositional space 𝒢.

We construct a state graph on the extended space {𝑠𝑜} ∪
𝒮 ∪ 𝒢 endowed with an initial state 𝑠𝑜. Then, we learn a
forward (backward) 𝑝𝐹 (𝜏) (𝑝𝐵(𝜏|𝑥)) policy s.t., for every 𝑔 ∈ 𝒢,

𝑝𝐹 (𝜏) = ∏
(𝑠,𝑠′)∈𝜏

𝑝𝐹 (𝑠′ | 𝑠) and ∑
𝜏⇝𝑔

𝑝𝐹 (𝜏) ∝ 𝑅(𝑔), (2)

in which 𝜏 ⇝ 𝑔 is a trajectory starting at 𝑠𝑜 and finishing
at 𝑔. Figure 1 illustrates a state graph on 𝒢 = {𝑔1, 𝑔2, 𝑔3}.

To achieve this, we parameterize 𝑝𝐹 (𝜏) and 𝑝𝐵(𝜏|𝑥) as
neural networks trained by stochastically minimizing

ℒ𝑇𝐵(𝑝𝐹 , 𝑝𝐵) = 𝔼[(log 𝑝𝐹 (𝜏)𝑍
𝑝𝐵(𝜏 | 𝑥)𝑅(𝑥)

)
2

]. (3)

III. Ancestral Generative Flow Networks

AGFN builds upon a GFlowNet to approximate the posterior
in (1); it is composed of a state graph and a score function.

1. The state graph (SG) is defined by an edge-addition
process illustrated below. Importantly, we remove the tran-
sitions leading to non-ancestral graphs from the SG.

2. Given a model 𝑓(𝑿 | 𝒢, 𝜃) indexed by parameters 𝜃, we
define the score function 𝑠 as the opposite of the BIC, i.e.,

𝑠(𝑿, 𝐺) = 2 max
𝜃

𝑓(𝑿 | 𝒢, 𝜃) − |𝐸| log 𝑛 − 2 |𝐸| log|𝑉 |, (4)

in which 𝐺 = (𝑉 , 𝐸) and 𝑛 is the size of 𝑿. In this work, 𝑓(· | 𝒢, 𝜃)
is represented by a Gaussian Structural Equation Model.

Figure 2: AGFN iteratively adds edges to an initially edgeless
AG. In doing so, it ensures the sampled graphs’ ancestrality.

In contrast to prior art, AGFN is strictly supported on the
space of AGs. In this regard, it is the only probabilistic
method suitable for Bayesian ancestral causal discovery.

IV. Optimal Knowledge Elicitation

Our human-in-the-loop framework has two ingredients.
1. A model of a potentially noisy expert: for variables 𝑉 , 𝑊 ,

𝑞(𝑉 ℛ̂𝑊 | ℛ) = 𝜋 · 1𝑉 ℛ̂𝑊=𝑉 ℛ𝑊 + (1 − 𝜋
3

) · 1𝑉 ℛ̂𝑊≠𝑉 ℛ𝑊 (5)

in which ℛ ∈ {→, ←, ↔, ∅} (ℛ̂) is the expert-provided (estimated)
relationship between 𝑉  and 𝑊 ; 𝜋 is an hyperparameter.
2. A scheme for integrating the expert’s knowledge into

AGFN’s learned model. Given feedbacks ℱ = {𝑉𝑖ℛ𝑖𝑊𝑖}
𝑛
𝑖=1,

𝑝(𝐺 | ℱ) = 𝑝(𝐺)⏟
AGFN

∏
1≤𝑖≤𝑛

𝑞
(
((
( 𝑉𝑖ℛ𝐺

𝑖 𝑊𝑖⏟
Relation in G

| 𝑉𝑖ℛ𝑖𝑊𝑖⏟
Feedback )

))
). (6)

Figure 3: We progressively refine the learned AGFN through
the incorporation of feedbacks from an human expert.

We probe the expert on the relation ℛ minimizing the cross-
entropy between distributions 𝑝(· | ℱ ∪ {ℛ}) and 𝑝(· | 𝒢).

V. Experimental evaluation

Human-aided AGFN largely outperforms baselines.

https://github.com/ML-FGV/agfn LatinX @ NeurIPS 2024
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