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Introduction
Major Depressive Disorder (MDD) is a multifaceted
mental health condition. Despite numerous studies
highlighting a significant association between MDD and
the gut microbiome, it remains unclear whether these
associations play a causal role in MDD development.
In this study, we conducted a differential abundance
analysis (DAA) followed by a causal analysis of the DFG
FOR2107 dataset (https://for2107.de/), which in-
cludes 1,269 patients. Our goal is to employ tools under
Judea Pearl’s causality framework [4] to obtain insights
into whether taxa identified as significantly associated
with MDD could potentially be causes of MDD.
Causal discovery algorithms capable of handling hid-
den confounders [8, 1], paired with tools for identifying
causal effects from their outputs [3, 2], have enabled a
fully data-driven approach to causal inference. This ap-
proach offers a clear advantage over methods such as
Mendelian Randomization, as all model hypotheses are
inherently testable from observational data.

We highlight two important contributions:

• Through a meticulous application of the FCI al-
gorithm, we identified that Eggerthella and Hun-
gatella causally contribute to MDD, while Co-
probacilius indirectly causes MDD via Eggerthella.

• Obesity not only affects MDD but also confounds
the relation between taxa variables and MDD. Us-
ing effect identification tools [3, 2], we show the
interventional probability of MDD increases with
the abundance of Eggerthella and Hungatella.

Microbiome Differential Abundance Analysis (DAA)
We performed a DAA to identify gut microbiome taxa
with significantly different abundance levels between
healthy and individuals with MDD. We employed two
different techniques, ZicoSeq (Yang and Chen, 2022) and
LinDA (Zhou et al., 2022), while adjusting for the poten-
tial confouding of age, sex, BMI, site, and library size.
Table shows the genera identified by both techniques at
a significance level of 5% after FDR correction.

Genus FDR-corr. p-values

LinDA ZicoSeq
Hungatella 0.0002 0.0071
Eggerthella 0.0063 0.0071
Coprobacillus 0.0070 0.0071
Lachnospiraceae FCS020 group 0.0063 0.011

Causal Discovery via Fast Causal Inference (FCI) Algorithm
We used both the complete and conservative FCI algorithms to
reveal causal relations [8, 1], available at the pcalg R package.
Conditional independencies between mixed (i.e., discrete and con-
tinuous) variables were tested using the symmetric approach in [6].
To ensure robustness against violations of the faithfulness assump-
tion, we assessed marginal causal consistency across Partial Ances-
tral Graphs (PAGs) obtained over all variable subsets, following
[5]. Additionally, we rigorously tested and validated inferred PAGs
for consistency with observed data on conditional independencies.
In a PAG, arrowheads and tails represent, respectively, non-
ancestral (non-causal) and ancestral (causal) relationships. Bidi-
rected edges represent spurious associations, while circles represent
undetermined relations.
Figure shows a valid PAG obtained using both FCI and conserva-
tive FCI, based on conditional independence tests developed using
LinDA. The PAG shows all robustly identified causal relationships
between taxa variables and MDD. Lachnospiraceae FCS020 group
was consistently linked to MDD by an edge ◦→, indicating it could
either be a causal factor or merely spuriously associated with MDD.

Obesity-Specific Causal Effects of Eggerthella and Hungatella on MDD
For easier interpretation, we categorized BMI values into three obesity categories.

Among the individuals, 746 were classified as Non-Obese, 334 as Obesity I, and 189 as Obesity II/III.

Examining the plots of post-interventional probabilities of MDD alongside the 95% confidence regions, a significant
increase is evident with the abundance of both Eggerthella and Hungatella, regardless of the obesity group.

By the generalized backdoor criterion [3], the probabil-
ity of developing MDD (Y = 1) after an intervention
that sets the abundance levels of Eggerthella / Hungatella
(do(X = x)), at a specified obesity condition (C = c), is:

P (Y = 1|do(x), c) =
∫
z

P (Y = 1|x, c, z)P (z|c)dbfz,

where Z = {Hungatella} when X is Eggerthella and Z =
{Eggerthella} when X is Hungatella. Its estimation is
carried out using a Monte Carlo method, with P (Y =
1|x, c, z) modeled through logistic regression:

Parameter Estimate Std. Error p-value
Intercept -0.406 0.081 5.39e-07
Obesity I 0.259 0.134 5.29e-02
Obesity II/III 0.954 0.173 3.72e-08
Eggerthella 0.008 0.002 1.64e-03
Hungatella 0.054 0.015 3.47e-04

Considering Discrete Levels of Eggerthella and Hungatella

The obesity-specific effect, defined as P (MDD = 1|do(X = High), c)− P (MDD = 1|do(X = Low), c) is as follows:

With X as Eggerthella:
Obesity Effect 95% C.I.
No 0.1742 0.07659 0.2718
I 0.1712 0.06460 0.2778
II/II 0.1397 0.03607 0.2433

With X as Hungatella:
Obesity Effect 95% C.I.
No 0.2078 0.07230 0.3433
I 0.2002 0.06261 0.3379
II/II 0.1577 0.04138 0.2741

The effect of Eggerthella is 0.1683 (CI: 0.06812, 0.2684), while that of Hungatella is 0.1984 (CI: 0.06607, 0.3307).
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